Roll No.:....

322612(22)

B. E. (Sixth Semester) Examination, April - May 2021

COMPILER DESIGN

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) of each question is compulsory and carries 2 marks.

Attempt any two parts from (b), (c) and (d) which carry 7 marks each.

Sweller newner warmingsty sell | Unit-Ing. 9. To recording of

- 1. (a) Explain boot strapping and cross compiler
 - (b) Draw the transition diagram and corresponding

2

		code that red	cognizes:		7		
		(i) Identifi	iers				
		(ii) Relatio	onal Operators				
	(c)	Describe var	rious phases of Compiler	t.	7		
	(d)		ferent compiler construc		7		
	Palestounit-II41410						
	(a)	Write four c	omponents of context from	ee grammer.	2		
	(b)	Show that fo	ollowing grammar is not	a SLR (1).	7		
$S \rightarrow L = R$ $S \rightarrow R$ $L \rightarrow \alpha R$ $L \rightarrow id$ $R \rightarrow L$							
	(c)	Explain oper	rator precedence parsing	with example.	7		
	(d)		LR parser for the grammar e action of parser for valid				

2.

		$S \rightarrow a A (R)$	
		T \rightarrow S.T S	
		$R \to T$	
		Unit-III	
3.	(a)	Define syntax directed translation.	2
	(b)	Write short notes on:	=7
		(i) Three address code (ii) Translation	
	(c)	Differentiate S-attribute and L-attribute with example.	7
	(d)	Define syntax tree. Write function for constructing	
		syntax trees and draw syntax tree for the	
		expression:	7
		a + a * (b - c) + (b - c) * d	

Unit-IV

4. (a) Define activation record.

.

(b)	Name various techniques for storage allocation.				
	Differentiate between stack and heap allocation.	7			
(c)	What is parameter passing? Explain various				
	methods of parameter passing.	7			
(d)	Write a note on dynamic storage allocation.	7			
Unit-V					
(a)	Define code optimization.	2			
(b)	Describe the implementation of basic block with				
	the help of DAG and by using algebric identities.	7			
daya	(c) Differentiate S-anabuse and Leutribure				
(c)	Explain in brief issues in the design the code				
	generator.	7			
(d)	Generate the assembly code for the following				
	restatement: The wall bill to the second address	7			

X := a / (b + c) - d * (e + f)